当前位置: 首页  师资队伍  土地资源与信息技术学科  徐冬云
徐冬云

学    历:

博士研究生

职    称:

校聘副教授

所属部门:

土地资源与信息技术学科

研究方向:

土壤近地传感,多传感融合,土壤数字制图

联系方式:

xudongyun@sdau.edu.cn




个人简介:

徐冬云,农学博士,校聘副教授。20137月毕业于山东农业大学土地资源管理专业,获管理学学士学位;20166月毕业于山东农业大学土地资源管理专业,获管理学硕士学位;202012月毕业于浙江大学农业遥感与信息技术专业,获农学博士学位。20219月至今就职于山东农业大学资源与环境学院。

教学工作:


研究方向:

土壤近地传感,多传感融合,土壤数字制图等相关领域的研究。

科研项目:

1、十三五国家重点研发计划项目:土壤作物多源信息实时分析技术与决策系统研究,2017-2020,参与。

2、浙江省基础公益研究计划项目:基于“ on -the-go” 高光谱数据连续快速检测水稻土有机质含量的研究”,2018-2020,参与

发表论文:

1. Xu D Y, Chen S C, Xu H Y, Wang N, Zhou Y, Shi Z. 2020. Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers. Environmental Pollution, 263, 114649.

2. Xu D Y, Chen S C, Viscarra Rossel R.A., Biswas A, Li S, Zhou Y, Shi Z. 2019. X-ray fluorescence and visible near infrared sensor fusion for predicting soil chromium content. Geoderma, 352: 61-69.

3. Xu D Y, Zhao R Y, Li S, Chen S C, Jiang Q S, Zhou L Q, Shi Z. 2019. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. European Journal of Soil Science,70:162-173.

4. Xu D Y, Ma W Z, Chen S C, Jiang Q S, He K, Shi Z. 2018. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture,144:1-8.

5. Xu D Y, Li X J, Dou Y Q, Liu M Q, Yang Y H, Niu J J. 2015. Estimation of the chlorophyll contents of tobacco infected by the mosaic virus based on canopy hyperspectral characteristics. Journal of Animal & Plant Sciences, 25 (3 Suppl. 1): 158-164.

6. 徐冬云,李新举,杨永花,窦玉青. 2016. 基于遥感技术的烟草花叶病监测研究,中国烟草学报,22(1):76-83.

7. Chen S C, Xu H Y, Xu D Y, Ji W J, Li S, Yang M H, Hu B F, Zhou Y, Wang N, Arrouays D, Shi Z. 2021. Evaluating validation strategies on the performance of soil property prediction from regional to continental spectral data. Geoderma. 400: 115159.

8. Chen S C, Xu D Y, Xu H Y, Ji W J, Yang M H, Zhou Y, Hu B F, Xu H Y, Shi Z. 2020. Monitoring soil organic carbon in alpine soils using in situ vis-NIR spectroscopy and a multilayer perception. Land Degradation & Development,1-13.

9. Xu H Y, Xu D Y, Chen S C, Ma W Z, Shi Z. 2020. Rapid determination of soil class based on visible-near infrared, mid-infrared spectroscopy and data fusion. Remote Sensing, 2020,12,1512.

10.Lin Y N, Xu D Y, Wang N, Shi Z, Chen Q X. 2020. Road extraction from very‐high‐resolution remote sensing images via a nested SE‐Deeplab model. Remote Sensing, 12, 2985. doi:10.3390/rs12182985.

11.Xia F, Hu B F, Zhou Y W, Ji W J, Chen S C, Xu D Y, Shi Z. 2020. Improved mapping of potentially toxic elements in soil via integration of multiple data sources and various geostatistical methods. Remote Sensing, 12, 3775.

12.Yang M H, Xu D Y, Chen S C, Li H Y, Shi Z. 2019. Evaluation of machine learning approaches to predict soil organic matter and pH using vis-NIR spectra. Sensors, 19,263.

13.Xia F, Hu B F, Shao S, Xu D Y, Zhou Y, Zhou Y, Huang M X, Li Y, Chen S C, Shi Z. 2019. Improvement of spatial modeling of Cr, Pb, Cd, As and Ni in soil based on portable X-ray fluorescence (PXRF) and geostatistics: A case study in east China. International Journal of Environmental Research and Public Health, 16, 2694.

14.Hu J, Peng J, Zhou Y, Xu D Y, Zhao R Y, Jiang Q S, Fu T T, Wang F, Shi Z. 2019. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satelliate multispectral images. Remote Sensing, 11:736.

15.Chen S C, Li S, Xu D Y, Ma W C, Shi Z, Zhang G L. 2018. Rapid determination of soil classes in soil profiles using vis–NIR spectroscopy and Multiple Objectives Mixed Support Vector Classification. European Journal of Soil Science, 70:42-53.

16.史舟,徐冬云,滕洪芬,胡月明,潘贤章,张甘霖. 2018. 土壤星地传感技术现状与发展趋势,地理科学进展,37(1): 79-92.